Функции безмиелиновых волокон

Функции безмиелиновых волокон

Ультраструктура нейрона

1.Плазмолемма. 2.Ядро. 3.Гранулярная ЭПС. 4.Аппарат Гольджи. 5.Лизосомы. 6.Митохондрии. 7.Элементы цитоскелета. 8.Аксосоматический синапс. 9.Кровеносный капилляр. 10.Отростки нейронов.

Специализированные клетки нервной системы, ответственные за рецепцию, проведение нервного импульса и влияния на другие нейроны, мышечные или секреторные клетки. Нейроны являются морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги. Нейроны отличаются большим разнообразием размеров. По количеству отростков различают: униполярные, имеющие только один аксон (у человека обычно не встречается); биполярные, имеющие один аксон и дентрит и мультиполярные имеют один аксон и много дендритов. Среди биполярных нейронов есть псевдоуниполярные, от тела которого отходит один общий вырост-отросток разделяющийся затем на дендрит и аксон. В зависимости от функции нейрона выделяют: рецепторные, ассоциативные и эффекторные. Большинство нейронов человека содержит одно округлое ядро. Исключение составляют нейроны некоторых ганглиев вегетативной нервной системы. Плазмолемма нейрона обладает способностью генерировать и проводить импульс. Её интегральными белками являются белки функционирующие как ионно-избирательные каналы и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляются в виде базофильных глыбок хроматофильная субстанция. Базофилия глыбок, объясняется высоким содержанием рибонуклеопротеидов. Каждая глыбка состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом, которые синтезируют белки цитозоля и интегральные белки плазмолеммы. В нейронах хорошо развит аппарат Гольджи, расположенный вокруг ядра. Пузырьки аппарата Гольджи транспортируют белки, либо в плазмолемме, либо в терминали (нейронексусы) или в лизосомы(гидролазы). Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы. Нейрофиламенты и нейротубулы участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

Что представлено на схеме? Назовите структуры, обозначенные цифрами.

Химический синапс.

1. Пресинаптическая часть

2. Постсинаптическая часть

3. Синаптические пузырьки

5. Микротрубочки, микрофиламенты

6. Пресинаптическая мембрана

7. Постсинаптическая мембрана с постсинаптическим уплотнением

Химический синапс состоит из трех компонентов: пресинаптической части, постсинаптической части и синаптической щели. Пресинаптическая часть образуется аксоном по его ходу или представляет собой расширенную конечную часть аксона. В ней содержатся митохондрии, агранулярная ЭПС, микрофиламенты, микротрубочки и синаптические пузырьки диаметром 20-65 нм, в которых находится нейромедиатор. Форма и характер содержимого пузырьков зависят от находящихся в них нейромедиаторов. Нейромедиаторы вырабатываются в теле нейрона и механизмом быстрого транспорта переносятся в окончания аксона. На внутренней стороне пресинаптической мембраны имеется пресинаптическое уплотнение, образованное белковой сетью. Синаптическая щель шириной 20-30 нм содержит элементы гликокаликса, которые обеспечивают адгезию и направленную диффузию медиатора. Постсинаптическая часть представлена постсинаптической мембраной, содержащей интегральные белки – рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена. В зависимости от того, является ли постсинаптической частью тело нейрона, дендрит или аксон, синапсы подразделяют на аксо-соматические, аксо-дендритические и аксо-аксональные, соответственно. Механизм передачи нервного импульса в химическом синапсе. Под действием нервного импульса происходит открытие кальциевых каналов пресинаптической мембраны, Са 2+ устремляется в аксон, мембраны синаптических пузырьков в присутствии Са 2+ сливаются с пресинаптической мембраной и содержащийся в них медиатор выделяется в синаптическую щель. Связываясь с рецепторами постсинаптической мембраны, медиатор вызывает ее деполяризацию и возникновение нервного импульса, или ее гиперполяризацию, обусловливая торможение. После экзоцитоза медиатора, большая часть его захватывается пресинаптической частью и используется повторно, поглощается окружающими глиальными клетками, некоторые медиаторы (например, ацетилхолин) расщепляются ферментами. Химический синапс обеспечивает передачу нервного импульса в одном направлении.

Фрагмент какой ткани на фотограмме? Аргументируйте вывод. Назовите структуры, обозначенные цифрами?

Миелиновые и безмиелиновые волокна нервной ткани.

1.Миелиновое волокно 2.Осевой цилиндр 3.Слои миелина 4.Леммоцит 5.Митохондрии 6.Гранулярная ЭПС 7.Безмиелиновое волокно 8.Ядро леммоцита 9.Осевые цилиндры 10.Мезаксон 11.Фибробласты

Нервные волокна это отростки нервных клеток, покрытые клетками олигодендроглии, которые здесь называются нейролеммоцитами (шванновские клетки). Отросток нервной клетки в составе волокна называют осевым цилиндром. Оболочки нервных волокон в различных отделах нервной системы отличаются, друг от друга по своему строению на основании этого волокна делятся на две группы: миелиновые и безмиелиновые. Безмиелиновые волокна находятся в основном в составе вегетативной нервной системы. Клетки олигодендроглии оболочек этих волокон располагаются плотно и образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В таких тяжах располагается не один, а несколько осевых цилиндров, принадлежащих различным нейронам. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При образовании безмиелиновых нервных волокон, осевые цилиндры погружаются в леммоцит, прогибая оболочку леммоцита, образуя складку-мезаксон. Оболочки нейролеммоцитов очень тонкие, поэтому мезаксон, границы клеток под микроскопом не видны. Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они толще, чем безмиелиновые. Миелиновые нервные волокна также состоят из осевого цилиндра, покрытого оболочкой из леммоцитов, но осевые цилиндры здесь толще, и оболочка построена сложнее. В миелиновом волокне различают два слоя оболочек: внутренний, более толстый – миелиновый слой и наружный тонкий, состоящий из цитоплазмы и ядер нейролеммоцитов-нейролемму. По ходу волокон встречаются участки, где нет миелина-узловые перехваты, они соответствуют границам смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами называется межузловым сегментом. На определенном расстоянии по ходу волокна располагаются светлые линии-насечки миелина. При развитии миелинового волокна осевой цилиндр, погружаясь в нейролеммоцит, прогибает его оболочку, образуя глубокую складку формируя мезаксон. При развитии мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, образуя вокруг него плотную, слоистую зону — миелинолвый слой. Наружным слоем называется периферическая зона нервного волокна, содержащая оттесненную цитоплазму нейролеммоцита и их ядра. Снаружи миелиновое волокно покрыто базальной мембраной. Осевой цилиндр ненрвных волокон состоит из нейроплазмы-цитоплазмы нервной клетки, содержащий продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра находятся митохондрии. С поверхности осевой цилиндр покрыт аксолеммой, обеспечивающий проведение нервного импульса. Скорость передачи импульса миелинового волокна больше, чем безмиелинового. Тонкие волокна бедные миелином и безмиелиновые проводят нервный импульс со скоростью 1-2 м/с, а толстые миелиновые 5-120 м/с.. В безмиелиновом волокне волна деполяризации мембраны идет по всей плазмолемме, не прерываясь, а в миелиновом волокне возникает только в области перехвата. Таким образом, для миелиновых волокон характерно проведение возбуждения прыжками. Между перехватами по аксолемме идет электрический ток, скорость которого выше чем прохождение волны деполяризации.

Читайте также:  Побочные эффекты регулона отзывы

Лабораторная работа № 6
Нервная ткань

Нервная ткань – основной структурный элемент нервной системы. Она осуществляет регуляцию деятельности всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой.
Нервную ткань образуют нервные клетки – нейроны (нейроциты) и вспомогательные элементы – нейроглия.
Нейрон является структурной и функциональной единицей нервной системы. У человека около 50 млрд. нейронов, объединенных в сложную сеть с многочисленными межнейронными контактами. Размеры нейронов широко варьируют: от 4 мкм (зернистые нейроны мозжечка) до 130 мкм (гигантские пирамидные клетки коры полушарий). Формы нейронов разнообразные: имеются звездчатые, пирамидные, веретиновидные, паукообразные и др. Отличительной особенностью нейронов является наличие отростков.
Функционально нейрон состоит из тела (перикарион), сильно ветвящихся коротких отростков – дендритов (от греч. dendron – дерево), длинного отростка – .аксона (axis ( лат.) – ось) (рис. 6.1).
Тело выполняет трофическую функцию по отношению к отросткам, обеспечивает рост дендритов и аксона. При отделении отростка от тела, он погибает. При разрушении тела дегенерирует вся клетка.
В теле нейрона различают оболочку, цитоплазму, ядро и все органоиды, характерные клетке. Ядро нейрона — обычно крупное, круглое, содержит одно, реже несколько хорошо выраженных ядрышек.
В цитоплазме хорошо выражена гранулярная эндоплазматическая сеть, в которой находится синтетический аппарат. Гранулярная эндоплазматическая сеть формирует комплексы цистерн, которые при окрашивании основными красителями имеют вид крупных глыбок (базофильное или тигроидное вещество). Хорошо развит комплекс Гольджи (впервые описан в нейронах), располагающийся возле ядра.
Митохондрии очень многочисленны и обеспечивают высокие энергетические потребности нейрона, связанные со значительной активностью синтетических процессов, формированием и проведением нервных импульсов. Лизосомальный аппарат обладает высокой активностью.
В цитоплазме нейронов содержится органоид специального назначения — фибриллярные структуры диаметром 6-10 нм из спиралевидно закрученных белков, так называемые нейрофибриллы. Нейрофибриллы выявляются при импрегнации серебром в виде волокон, расположенных в теле нейрона беспорядочно, а в отростках — параллельными пучками (рис. 6.2). Основная функция нейрофибрилл — опорно-механическая (цитоскелет).
Тело нейрона имеет специализированную мембрану, обеспечивающую формирование и распространение нервного импульса по направлению от дендрита к аксону.

Аксон (у клетки всегда только один) проводит импульс от тела нейрона к другим клеткам. Длина его может достигать 1,5 м. Аксон отходит от утолщенного участка перикариона – аксонного холмика, в котором генерируются нервные импульсы. На конце аксон может ветвиться, образуя синапсы со многими клетками.
Дендрит (у клетки от 1 до 1000, обычно сильно разветвляются) проводят импульс к телу нейрона. На дендритах имеются выросты — шипики. Выросты значительно увеличивают поверхность дендрита в сравнении с телом клетки, и создают условия для размещения на дендритах большого числа контактов с другими нервными клетками.
Классификация нейронов
1. По функции:

а) афферентные (чувствительные) или рецепторные; функция – получение и передача информации в вышележащие структуры центральной нервной системы;
б) ассоциативные (вставочные, кондукторные) – обеспечивают взаимодействие между нейронами одной структуры (на 90% нервная система состоит из них);
в) эфферентные (эффекторные, двигательные или секреторные) – передают информацию по длинному аксону к исполнительным органам.

2. По количеству отростков:
а) униполярные — с одним отростком;
б) биполярные (двухотросчатые;
в) мультиполярные — с тремя и более отростками (таких нейронов большинство).

Нейроглия. Обеспечивает опорную, разграничительную, трофическую, секреторную, защитную функции, участвует в регуляции скорости проведения нервного импульса по нервным волокнам. Различают макро- и микроглию. Макроглия развивается из элементов нервной трубки, а микроглия представляет собой глиальные макрофаги, которые развиваются из моноцитов и обладают фагоцитарной активностью.
I. Макроглия представлена астроцитами, эпендимоцитами и олигодендроцитами.
Астроциты — клетки отростчатой формы. Они входят в состав центральной нервной системы. Различают:
плазматические астроциты — клетки с короткими, но толстыми отростками, содержатся в сером веществе мозга.
волокнистые астроциты — клетки с тонкими длинными отростками, находятся в белом веществе мозга.
Астроциты прилегают к телам нейронов и стенкам капилляров. Они выполняют опорную и разграничительную функции, участвуют в водном обмене и транспорте веществ из капилляров к нейронам.
Эпиндимоциты выстилают полость спинномозгового канала и мозговые желудочки. По строению клетки напоминают эпителий. Они имеют кубическую или призматическую форму, плотно прилегают друг к другу, образуя сплошной пласт. На апикальной поверхности имеют реснички. Другой конец клеток продолжается в длинный отросток, пронизывающий всю толщу головного, спинного мозга. Функция: разграничительная (ликворомозговая ткань), участвует в образовании и регуляции состава ликвора.
Олигодендроциты – мелкие клетки с небольшим числом отростков. Они входят в состав органов центральной и периферической нервной системы, где они образуют оболочки нейронов и их отростков. Функции олигодендроцитов разнообразны. Они участвуют в питании нейронов, в проведении импульсов по нервным волокнам, способны накапливать в себе большое количество жидкости, поддерживая гомеостаз нервной ткани, выполняют защитную (изоляционную) функцию.
II. Микроглия (глиальные макрофаги) – мелкие клетки. При возбуждении отростки их выпячиваются, клетки округляются, увеличиваются в объеме, приобретают подвижность и способность к фагоцитозу. Источник развития: в эмбриональном периоде — из мезенхимы; в последующем могут образоваться из клеток крови моноцитарного ряда.
Нервные волокна
Отростки нервных клеток, обычно покрытые оболочками, называются нервными волокнами. В различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, поэтому в соответствии с особенностями строения все нервные волокна делятся на две группы – миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, который лежит в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются шванновскими клетками или леммоцитами. Нервные волокна обеспечивают проведение нервных импульсов.
Безмиелиновые нервные волокна
Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы.
При формировании безмиелиновых волокон несколько отростков нейронов (будущих осевых цилиндров) погружаются в шванновскую клетку (леммоцит), прогибая ее плазмолемму до центра клетки. Таким образом, осевой цилиндр подвешен на сдвоенной мембране леммоцита, называемой мезаксоном. Каждый осевой цилиндр, охваченный оболочкой леммоцита, лежит как бы в желобке. Оболочки леммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом рассмотреть нельзя, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, окутывающий осевые цилиндры. Снаружи каждое нервное волокно окружено базальной мембраной. Нервный импульс по безмиелиновому нервному волокну проводится как волна деполяризации цитолеммы осевого цилиндра со скоростью 1-2 м/сек.
Миелиновые нервные волокна
Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 1 до 20 мкм.
При формировании миелиновых волокон только один отросток нейрона погружается в леммоцит, окружается его плазмолеммой, образующей мезаксон. При дальнейшем развитии мезаксон удлиняется и концентрически наслаивается на осевой цилиндр в результате вращения леммоцита. Многочисленные слои мезаксона вокруг осевого цилиндра образуют плотную слоистую зону — миелиновый слой (комплекс липидов и белков). В процессе образования миелина цитоплазма и ядро леммоцита оттесняются на периферию волокна, образуя наружный слой — неврилемму (нейролемму). Снаружи шванновские клетки окружены базальной мембраной. В местах соединения двух леммоцитов миелина нет. Эти участки называются узловыми перехватами (перехватами Ранвье). Большинство нервных волокон в нервной системе по строению являются миелиновыми. Нервный импульс в миелиновом нервном волокне проводится как волна деполяризации цитолеммы осевого цилиндра, «прыгающая» (сальтирующая) от перехвата к следующему перехвату со скоростью до 120 м/сек.
В центральной нервной системе волокна образуют проводящие пути, на периферии – нервы.
Нервные волокна, объединенные соединительной тканью, образуют нерв. Тончайшие прослойки между нервными волокнами называют эндоневрием. Более широкие прослойки, окружающие пучки нервных волокон, являются периневрием. Снаружи нерв окружает волокнистая соединительная ткань — эпиневрий. Все соединительнотканные прослойки и оболочка пронизаны кровеносными сосудами и нервами.
Различают нервы чувствительные, образованные дендритами чувствительных нейронов, двигательные, образованные аксонами двигательных (моторных) нейронов, и смешанные (спинномозговые нервы).
Синапсы
Нервные клетки своими отростками контактируют с другими нейронами или с клетками, не принадлежащими к нервной системе (мышечными, железистыми). Места таких контактов называют синапсами (рис. 6.3). Одна нервная клетка способна образовать до 10 000 и более связей (синапсов) на телах и отростках других клеток. Различают синапсы с химической и электрической передачей нервного импульса. Электрические синапсы у высших животных встречаются редко.
В синапсах с химической передачей веточки аксона нейрона образуют его пресинаптическую часть, взаимодействующую с плазмолеммой другого нейрона – постсинаптической частью. В синапсе выделяют три основные элемента: пресинаптическую мембрану, постсинаптическую мембрану и синаптическую щель, расположенную между ними (рис. 6.3). В пресинаптической области находятся мельчайшие пузырьки, заполненные физиологически активными веществами — медиаторами. При возбуждении нейрона в нем возникают импульсы, которые распространяются по нервному волокну и достигают пресинаптической области, вызывая изменение состояния пресинаптической мембраны. Синаптические пузырьки, находящиеся около пресинаптической мембраны, лопаются, медиатор поступает в синаптическую щель. Сами пресинаптические пузырьки остаются в пресинаптической части и несколько раз повторно заполняются медиатором.

Читайте также:  Можно кормить ребенка при температуре у мамы

Нервное волокно – это удлиненный отросток нейронов, покрытый леммоцитами и миелиновой или безмиелиновой оболочкой. Основной его функцией является проводимость нервных импульсов. В периферической и центральной нервной системе преобладают мякотные (миелиновые) нервные волокна, которые иннервируют скелетную мускулатуру, безмякотные находятся в симпатическом отделе вегетативной системы и распространяются на внутренние органы. Волокна, не имеющие оболочки, называются голыми осевыми цилиндрами.

Миелинизация

Нервное волокно имеет в основе отросток нейрона, который образует своеобразную ось. Снаружи он окружен миелиновой оболочкой с биомолекулярной липидной основой, состоящей из большого количества витков мезаксона, который по спирали накручивается на нейроновую ось. Таким образом, происходит миелинизация нервных волокон.

Миелиновые нервные волокна периферической системы сверху дополнительно покрыты вспомогательными Шванновскими клетками, поддерживающими аксон и питающими тело нейрона. Поверхность мякотной мембраны имеет интервалы – перехваты Ранвье, в этих местах осевой цилиндр прикрепляется к наружной Шванновской мембране.

Миелиновый слой не обладает электропроводящими свойствами, их имеют перехваты. Возбуждение происходит в ближайшем к месту воздействия внешнего раздражителя интервале Ранвье. Импульс передается скачкообразно, от одного перехвата к другому, это обеспечивает высокую скорость распространения импульса.

Миелиновые нервные волокна регулируют обмен веществ в мышечной ткани, обладают высоким сопротивлением по отношению к биоэлектрическому току.

Промежутки Ранвье генерируют и усиливают импульсы. У волокон центральной нервной системы нет Шванновской мембраны, эту функцию выполняют олигодендроглии.

Безмякотные ткани имеют несколько осевых цилиндров, у них нет миелинового слоя и перехватов, сверху покрыты Шванновскими клетками, между ними и цилиндрами образуются щелевидные пространства. Волокна имеют слабую изоляцию, допускают распространение импульса из одного отростка нейрона в другой, на всем протяжении контактируют с окружающей средой, скорость проведения импульсов гораздо ниже, чем у мякотных волокон, при этом организму требуется большее количество энергии.

Из мякотных и безмякотных отростков нейронов формируются крупные нервные стволы, которые, в свою очередь, разветвляются на более мелкие пучки и заканчиваются нервными окончаниями (рецепторные, двигательные, синапсы).

Нервные окончания – это конец миелиновых и безмиелиновых нервных волокон, который формирует межнейронные контакты, рецепторные и двигательные окончания.

Принципы классификации

Разные типы нервных волокон имеют неодинаковую скорость проведения импульсов возбуждения, это зависит от их диаметра, длительности потенциала действия и степени миелинизации. Существует прямо пропорциональная зависимость между скоростью и диаметром волокна.

Структурно-функциональный метод классификации нервных волокон Эрлангера-Гассера по скорости проведения нервных импульсов:

  • Миелиновое нервное волокно группы А: α, β, Υи δ. Самый большой диаметр и толстую оболочку имеют ткани α – 20 мк, они обладают хорошей скорость проводимости импульсов – 120 м/сек. Эти ткани иннервируют источник возбуждения из столба спинного мозга к скелетным рецепторам мышц, сухожильям, отвечают за тактильные ощущения.

Остальные типы волокон имеют меньший диаметр (12 мк), скорость проведения импульса. Эти ткани передают сигналы от внутренних органов, источников боли в ЦНС.

  • Миелиновые волокна группы В относятся к автономной нервной системе. Общая скорость проведения импульса составляет 14 м/сек, потенциал действия в 2 раза больше, чем у волокон группы А. Миелиновая оболочка слабо выражена.
  • Безмиелиновые волокна группы С имеют очень маленький диаметр (0,5 мк) и скорость возбуждения (6 м/сек). Эти ткани иннервируют симпатическую нервную систему. К данной группе также относятся волокна, которые проводят импульсы от центров боли, холода, тепла и давления.
Читайте также:  Причины подтекания околоплодных вод во втором триместре

Отростки нейронов делят на афферентные и эфферентные. Первый тип обеспечивает передачу импульсов от рецепторов тканей в центральную нервную систему. Второй тип передает возбуждение от ЦНС к рецепторам тканей.

Функциональная классификация нервных волокон афферентного типа по Ллойду-Ханту:

Демиенилизация

Процесс демиелинизации нервных волокон – это патологическое повреждение миелиновой оболочки, которое вызывает нарушение функционирования тканей. Вызывают патологию воспалительные процессы, метаболические нарушения, нейроинфекция, интоксикация или ишемия тканей. Миелин замещается фиброзными бляшками, в результате нарушается проведение импульсов.

Первый тип демиелинизации – это миелинопатия, вызванная аутоиммунными реакциями организма, болезнью Канавана, синдромом Гийена-Барре, амиотрофией Шарко-Мари-Тута.

Второй тип – это миелинокластия. Патология характеризуется наследственной предрасположенностью к разрушению миелиновой оболочки (болезнь Бинсвангера).

Демиелинизирующие заболевания

Заболевания, приводящие к разрушению миелиновой оболочки, чаще всего имеют аутоиммунную природу, другой причиной может быть лечение нейролептиками или наследственная предрасположенность. Разрушение липидного слоя вызывает снижение скорости проведения импульсов раздражения.

Заболевания разделяют на те, которые затрагивают центральную нервную систему и патологии, повреждающие периферическую сеть. Болезни, которые влияют на работу ЦНС:

  • Миелопатия спинного мозга возникает в результате сдавливания миелиновых волокон межпозвоночными грыжами, опухолями, костными осколками, после инсульта спинного мозга. У больных снижается чувствительность, мышечная сила в области поражения, возникают парезы рук или ног, нарушается работа кишечника, мочевыводящей системы, развивается атрофия мышц нижних конечностей.
  • Лейкодистрофия головного мозга вызывает поражение белого вещества. У пациентов нарушена координация движений, они не могут держать равновесие. Развивается мышечная слабость, появляются непроизвольные судороги, нервный тик. Постепенно ухудшается память, интеллектуальные способности, зрение и слух. На поздних стадиях возникает слепота, глухота, полный паралич, трудности во время проглатывания пищи.
  • Мелкоочаговая лейкоэнцефалопатия головного мозга чаще всего поражает мужчин старше 60 лет. Основными причинами является артериальная гипертензия и наследственная предрасположенность. У пациентов ухудшается память и внимание, появляется заторможенность, трудности с речью. Замедляется походка, нарушается координация движений, появляется недержание мочи, больному тяжело глотать пищу.
  • Синдром осмотической демиелинизации характеризуется распадом миелиновых оболочек в тканях головного мозга. У больных отмечается расстройство речевого аппарата, постоянное чувство сонливости, депрессии или повышенная возбудимость, мутизм, парез всех конечностей. На ранних стадиях заболевания процесс демиелинизации обратим.
  • Рассеянный склероз проявляется онемением одной или двух конечностей, частичная или полная потеря зрения, боль при движении глаз, головокружение, быстрая утомляемость, тремор конечностей, нарушение координации движений, покалывание в различных частях тела.
  • Болезнь Девика – это воспалительный аутоиммунный недуг, который поражает зрительный нерв и ствол спинного мозга. К симптомам относится различная степень нарушения зрения, вплоть до слепоты, парапарезы, тетрапарезы, нарушение функционирования органов малого таза.

Симптомы заболеваний зависят от области поражения миелиновых волокон. Выявить процесс демиелинизации можно с помощью компьютерной томографии, магниторезонансной терапии. Признаки поражения периферической нервной системы обнаруживаются на электромиографии.

Мне посчастливилось закончить Ленинградский электротехнический институт связи имени проф. М.А Бонч-Бруевича (в 1961 году), и вечернее отделение Волгоградского медицин-ского института (в 1971 году). Я думал, что такое сочетание будет востребовано медици-ной. Так оно и оказалось: я был востребован для ремонта аппаратуры.
Но меня интересовали электрические процессы. Здесь я хочу сказать о моём видении фе-номена передачи нервного импульса по аксону, волокну толщиной 20-40 микрон на рассто-яние до 1 метра со скоростью порядка 100 метров в секунду. В этом феномене наиболее полно используется представление моей специальности радиоинженера – формирование прямоугольных импульсов с высокой крутизной фронта. Рисунки взяты из картинок вики-педии.

На идею меня навёл факт существование вокруг аксона многослойной миелиновой обо-лочки, наподобие коаксиального кабеля, что является условием для передачи импульса с высокой крутизной фронта из-за снижения удельной электроёмкости вдоль кабеля (аксо-на).
Какие импульсы и как передаются к синапсу?
От тела нейрона до булавовидного окончания синапса протянулись микротрубочки. В них, перемещаются от тела нейрона, где они синтезируются, к конечному образованию – синап-су молекулы медиатора, которые в электрическом поле становятся катионами.
Тело нейрона имеет мембранный потенциал порядка — 0.1 вольта. Аналогичный потенци-ал поддерживается ионными помпами и на мембране булавовидного образования синапса.
Представим, что к телу нейрона поступает импульс, который деполяризует его мембрану до уровня всего тела, примем его за нулевой. Тогда по микротрубочкам, как по пучку про-водов, к булавовидному окончанию синапса поступит импульс положительной полярности.
Посчитаем напряжённость электрического поля, возникающего в булавовидном образо-вании синапса. На расстоянии порядка 100 нанометров будет действовать импульс 0.1 вольта.
Расчёт даст цифру 10000 вольт/см. В действительности есть потери, как от сопротивления самого пучка микротрубочек, так и в крутизне переднего фронта импульса из-за остатков удельной ёмкости вдоль аксона, но важно, что при реальном скачке напряжённости в жид-кой среде возникает электрогидродинамический удар – эффект Юткина.
В синаптическую щель вбрасывается медиатор и происходит деполяризация поверхно-стей синаптической щели. Их мембранный потенциал сбрасывается.
В это время сам нейрон возвращается к исходному состоянию и восстанавливает свой мембранный потенциал до — 0.1 вольта. К булавовидному образованию синапса по микро-трубочкам приходит импульс отрицательной полярности, и медиатор – катион всасывается из синаптической щели в булавовидное образование. Мембранный потенциал булавовид-ного образования синапса восстанавливается, и нейрон готов к следующему сигналу со стороны нейрона.
Такое представление объясняет все наблюдаемые явления в комплексе: обязательное многослойное окутывание аксонов миелиновой оболочкой специализированными шван-новскими клетками, быстрое перемещение сигнала не в виде нервного импульса, а в каче-стве электрического сигнала по пучку микротрубочек от тела нейрона к синапсу, механизм разрыва мембраны синапса от электрогидродинамического удара и обратное всасывание медиатора.

Ссылка на основную публикацию
Фундук с медом польза для мужчин
Орехи — отличный способ улучшения потенции для мужчин. Но они могут гораздо больше. Орехи словно специально были созданы для того,...
Фото успокоительных таблеток
В России за год на 13 процентов выросло число покупателей седативных (успокоительных) препаратов. Об этом сообщает сервис "Все аптеки" от...
Фото уход за руками
Уход за руками — это не только периодически выполняемые косметические процедуры, но простые правила, соблюдать которые нужно каждый день. Эксперты...
Функции безмиелиновых волокон
Ультраструктура нейрона 1.Плазмолемма. 2.Ядро. 3.Гранулярная ЭПС. 4.Аппарат Гольджи. 5.Лизосомы. 6.Митохондрии. 7.Элементы цитоскелета. 8.Аксосоматический синапс. 9.Кровеносный капилляр. 10.Отростки нейронов. Специализированные клетки...
Adblock detector