Хромосомы в интерфазном ядре

Хромосомы в интерфазном ядре

Интерфазная хромосома — это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То есть функция интерфазной ХР — передача информации с генома, последовательности нуклеотидов в молекуле ДНК, для синтеза необходимых белков, ферментов и т. д.
Когда приходит время деления клетки необходимо сохранить всю имеющуюся информацию и передать ее в дочерние клетки. В состоянии «раздрая» ХР этого сделать не может . Поэтому хромосоме приходится структурироваться — скручивать нить своей ДНК в компактную структуру. ДНК к этому времени уже удвоена и каждая нить скручивается в свою хроматиду. 2 хроматиды образуют хромосому. В профазе под микроскопом в ядре клетки становятся заметны маленькие рыхлые комочки — это будущие ХР. Они постепенно укрупняются и формируют видимые хромосомы, которые к середине метафазы выстраиваются по экватору клетки. В норме в телофазе равное количество хромосом начинает двигаться к полюсам клетки. (я не повторяю 1-го ответа, там все правильно. Суммируйте информацию) .
Однако случается иногда, что хроматиды цепляются друг за друга, переплетаются, кусочки отрываются — а результате две дочерние клетки получают немного неравную информацию. Такая штука называется патологический митоз. После него дочерние клетки будуи работать неправильно. При сильном повреждении хромосом клетка погибнет, при более слабом не сможет разделиться еще раз или даст череду неправильных делений. Такие вещи приводят к возникновению заболеваний, от нарушений биохимической реакции в отдельной клетке, до заболевания раком какого-то органа. Клетки делятся во всех органах, но с разной интенсивностью, поэтому у разных органов — разная вероятность заболеть раком. К счастью такие патологические митозы бывают не слишком часто и природа придумала механизмы избавления от получившихся неправильных клеток. Только когда среда обитания организма очень плохая (повышен радиоактивный фон, сильные загрязнения воды, воздуха вредными хим. веществами, бесконтрольное применение лекарственных препаратов и т. п. ) -природный защитный механизм не справляется. В таком случае вероятность появления заболеваний увеличивается. Нужно стараться свести вредные факторы воздействия на организм к минимуму и принимать биопротекторы в виде живой пищи, свежего воздуха, витаминов и веществ необходимых в данной местности, это может быть иод, селен, магний или что-то еще. Не игнорируйте заботу о своем здоровье.

Хроматин (греч. χρώματα — цвета, краски) — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК

Различают два вида хроматина:
1) эухроматин, локализующийся ближе к центру ядра, более светлый, более деспирилизованный, менее компакт-ный, более активен в функциональном отношении. Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от-крыты для транскрипции. Эти сегменты не окрашиваются и не видны в световой микроскоп.
2) гетерохроматин — плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции) . Он интенсивно окра-шивается основными красителями, и в световом микроскопе имеет вид тёмных пятен, гранул. Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т. е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Консти-тутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма. Примером скопления факультативного гетерохроматина является тельце Барра – инактиви-рованная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна. В большинст-ве клеток оно лежит у кариолеммы.

Половой хроматин — особые хроматиновые тельца клеточных ядер особей женского пола у человека и других млекопитающих. Располагаются у ядерной оболочки, на препаратах имеют обычно треугольную или овальную форму; размер 0,7—1,2 мк (рис. 1). Половой хроматин образован одной из Х-хромосом женского кариотипа и может быть выявлен в любой ткани человека (в клетках слизистых оболочек, кожи, крови, биопсированной ткани), Наиболее простым исследованием полового хроматина является исследование его в клетках эпителия слизистой оболочки полости рта. Взятый шпателем соскоб со слизистой оболочки щеки помещают на предметное стекло, окрашивают ацетоорсеином и анализируют под микроскопом 100 светлоокрашенных клеточных ядер, подсчитывая, сколько из них содержат половой хроматин. В норме он встречается в среднем в 30—40% ядер у женщин и не обнаруживается у мужчин

15.Особенности строения метафазных хромосом. Типы хромосом. Хромосомный набор. Правила хромосом.

Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНП, уложенную в виде суперспирали. При спирализа-ции участки эу- и гетерохроматина укладываются закономерным образом, так что на протяжении хроматид образуются чередующиеся поперечные полосы. Их выявляют при помощи специальных окрасок. Поверхность хромосом покрыта различными молекулами, главным образом, рибонуклеопротеинами (РНП). В соматических клетках имеются по две копии каждой хромосомы, их называют гомологичными. Они одинаковы по длине, форме, строению, расположению полос, несут одни и те же гены, которые локализованы одинаково. Гомологичные хромосомы могут различаться аллелями генов, содержащихся в них. Ген — это участок молекулы ДНК, на котором синтезируется активная молекула РНК. Гены, входящие в состав хромосом человека, могут содержать до двух млн пар нуклеотидов.

Деспирализованные активные участки хромосом не видны под микроскопом. Лишь слабая гомогенная базофилия нуклеоплазмы указывает на присутствие ДНК; их можно выявить также гистохимическими методами. Такие участки относят к эухроматину. Неактивные сильно спирализованные комплексы ДНК и высокомолекулярных белков выделяются при окрасках в виде глыбок гетерохроматина. Хромосомы фиксированы на внутренней поверхности кариотеки к ядерной ламине.

Хромосомы в функционирующей клетке обеспечивают синтез РНК, необходимых для последующего синтеза белков. При этом осуществляется считывание генетической информации — ее транскрипция. Не вся хромосома принимает в ней непосредственное участие.

Разные участки хромосом обеспечивают синтез различных РНК. Особенно выделяются участки, синтезирующие рибосомные РНК (рРНК); ими обладают не все хромосомы. Эти участки называют ядрышковыми организаторами. Ядрышковые организаторы образуют петли. Верхушки петель разных хромосом тяготеют друг к другу и встречаются вместе. Таким образом формируется структура ядра, именуемая ядрышком (рис. 20). В нем различают три компонента: слабоокрашенный компонент соответствует петлям хромосом, фибриллярный — транскрибированной рРНК и глобулярный — предшественникам рибосом.

Читайте также:  Функциональные классы стенокардии напряжения таблица

Хромосомы являются ведущими компонентами клетки, регулирующими все обменные процессы: любые метаболические реакции возможны только с участием ферментов, ферменты же всегда белки, белки синтезируются только с участием РНК.

Вместе с тем хромосомы являются и хранителями наследственных свойств организма. Именно последовательность нуклеоти-дов в цепях ДНК определяет генетический код.

Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом. хромосомный набор-Кариоти́п — совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора. Термин «кариотип» был введён в 1924 году советским цитологом

1. Постоянство числа хромосом.

Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, У мушки дрозофилы — 8, у собаки -78. у курицы -78).

2. Парность хромосом.

Каждая. хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну — от отца, другую — от матери.

3. Правило индивидуальности хромосом.

Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Правило непрерывности.

Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде, таким о6разом, хромосомы непепрывны: от хромосомы образуется хромосома.

16.Кариотип человека. Его определение. Кариограмма, принцип составления. Идиограмма, ее содержание.

Кариотип.(от карио . и греч. typos — отпечаток, форма),ттипичная для вида совокупность морфологических признаков хромосом (размер, форма, детали строения, число и т. д.). Важная генетическая характеристика вида, лежащая в основе кариосистематики. Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование кариотипа проводится с помощью метода, называемого цитогенетика.

Идиограмма (от греч . idios — свой, своеобразный и . грамма), схематическое изображение гаплоидного набора хромосом организма, которые располагают в ряд в соответствии с их размерами.

Кариограмма (от карио. и. грамма),графическое изображение кариотипа для количественной характеристики каждой хромосомы. Один из типов К. — идиограмма -схематическая зарисовка хромосом, расположенных в ряд по их длине (рис.). Др. тип К. — график, на котором координатами служат какие-либо значения длины хромосомы или её части и всего кариотипа (например, относительная длина хромосом) и так называемый центромерный индекс, т. е. отношение длины короткого плеча к длине всей хромосомы. Расположение каждой точки на К. отражает распределение хромосом в кариотипе. Основная задача кариограммного анализа -выявление гетерогенности (различий) внешне сходных хромосом в той или иной их группе.

Дата добавления: 2016-06-18 ; просмотров: 9268 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ТЕМА :” ЯДРО. СТРУКТУРА ИНТЕРФАЗНОГО ЯДРА. ОСНОВЫ БИОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КЛЕТКИ”

Ядро является основной частью клетки, кодирующей информацию о структуре и функции органа. Эта информация заложена в генетическом материале, ДНК, представляющей собой в комплексе с основными белками ( гистонами) ДНП. За некоторым исключением ( митохондрии) ДНК локализуется исключительно в ядре. ДНК способна реплицироваться сама, обеспечивая тем самым передачу генетического кода дочерним клеткам в условиях клеточного деления.

Ядро играет центральную роль в синтезе белка и полипептидов, являясь носителем генетической информации. Все ядра клеток организма содержат те же самые гены, одни клетки различны по своей структуре, функции и характеру продуцируемых клеткой веществ. Ядерный контроль осуществляется путем

репрессии или депрессии ( экспрессии) активности различных генов. Трансляция о характере синтеза белка связана с образованием м-РНК. Многие РНК – это комплекс белка и РНК, т.е. РНП. Интерфазное ядро в большинстве клеток – это образование округлой или овальной формы в несколько мм в диаметре. В лейкоцитах и клетках соединительной ткани ядро дольчатое и обозначается термином полиморфное.

Интерфазное ядро имеет несколько различных структур: ядерную оболочку, хроматин, кариолимфу и ядрышко.

Ядерная оболочка

  1. Наружная ядерная мембрана – на поверхности расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны. Со стороны цитоплазмы она окружена рыхлой сетью промежуточных ( виментиновых) филаментов.
  2. Перинуклеарные цистерны – часть околоядерных цистерн связана с гранулярной эндоплазматической сетью ( 20-50 нм).
  3. Внутренняя ядерная мембрана – отделена от содержимого ядра ядерной пластинкой.
  4. Ядерная пластинка толщиной 80-300 нм, участвует в организации ядерной оболочки и перинуклеарного хроматина, содержит белки промежуточных филаментов – ламины А, В и С.
  5. Ядерная пора – от 3-4 тысяч специализированных коммуникаций, осуществляют транспорт между ядром и цитоплазмой . Ядерная пора d 80 нм, имеет: а) канал поры – 9 нм

б) комплекс ядерной поры, последний содержит белок-рецептор, реагирующий на сигналы ядерного импорта ( входной билет в ядро).Диаметр ядерной поры может увеличивать диаметр канала поры и обеспечивать перенос в ядро больших макромолекул ( ДНК-РНК – полимераза).

Ядерная пора состоит из 2-х параллельных колец по одному с каждой поверхности кариолеммы. Кольцо диаметром 80 нм, образованы они 8 белковыми гранулами , от каждой гранулы к центру тянется нить ( 5 нм), которая формирует перегородку ( диафрагму). В центре расположена центральная гранула . Совокупность этих структур называется комплекс ядерной поры. Здесь формируется канал диаметром 9 нм, такой канал называют водным, поскольку по нему движутся мелкие водорастворимые молекулы и ионы.

Функции ядерной поры: 1. Избирательный транспорт;

  1. Активный перенос в ядро белков с последовательностью, характерной для белков ядерной локализации;
  2. Перенос в цитоплазму субьединиц рибосом с изменением конформации порового комплекса.

Внутренняя ядерная мембрана — гладкая и связана с помощью интегральных белков с ядерной пластинкой, которая представляет собой слой, толщиной 80-300 нм. Эта пластинка или ламина – состоит из переплетенных промежуточных филаментов ( 10 нм), формирующих кариоскелет. Функции ее :

  1. Сохранение структурной организации поровых комплексов;
  2. Поддержание формы ядра;
  3. Упорядоченная укладка хроматина.

Она формируется в результате спонтанной ассоциации 3-х главных полипептидов. Это структурный каркас ядерной оболочки с участками специфического связывания хроматина.

Механизм ядерного импорта и экспорта

Читайте также:  Зентел таблетки инструкция по применению

Перемещение молекул в ядро и из него происходит путем активного транспорта, пассивной диффузии или путем специальной ядерной локализации с участием сигнальной последовательности белков.

При этом : а) пассивная диффузия

б) активный транспорт проходят через ядерный поровый

Часть пятая: Клеточное ядро.

Ядро (nucleus) клетки — система генетической детерминации и регуляции белкового синтеза.

Ядро обеспечивает две группы общих функций: одну, связанную собственно с хранением и передачей генетической информации, другую — с ее реализацией, с обеспечением синтеза белка.

Хранение и поддержание наследственной информации в виде неизменной структуры ДНК связаны с наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекул ДНК. В ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность при митозе двум дочерним клеткам получить совершенно одинаковые в качественном и количественном отношении объемы генетической информации.

Другой группой клеточных процессов, обеспечиваемых активностью ядра, является создание собственно аппарата белкового синтеза (рис. 16). Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но и транскрипция всех видов транспортных и рибосомных РНК. В ядре происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Вот почему выпадание или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

Структура и химический состав клеточного ядра

Ядро неделящейся, интерфазной клетки обычно одно на клетку (хотя встречаются и многоядерные клетки). Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы (рис. 17).

Хроматин

При наблюдении живых или фиксированных клеток внутри ядра выявляются зоны плотного вещества, которые хорошо воспринимают разные красители, особенно основные. Благодаря такой способности хорошо окрашиваться этот компонент ядра и получил название «хроматин» (от греч. chroma — цвет, краска). В состав хроматина входит ДНК в комплексе с белком. Такими же свойствами обладают и хромосомы, которые отчетливо видны во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками.

Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации их участков морфологи называют эухроматином (euchromatinum). При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином (heterochromatinum). Степень деконденсации хромосомного материала — хроматина в интерфазе может отражать функциональную нагрузку этой структуры. Чем «диффузнее» распределен хроматин в интерфазном ядре (т.е. чем больше эухроматина), тем интенсивнее в нем синтетические процессы.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК.

Таким образом, хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Наблюдения за структурой хроматина с помощью электронного микроскопа показали, что как в препаратах выделенного интерфазного хроматина или выделенных митотических хромосом, так и в составе ядра на ультратонких срезах всегда видны элементарные хромосомные фибриллы толщиной 20—25 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов (ДНП), в состав которых входят ДНК и специальные хромосомные белки — гистоновые и негистоновые. В составе хроматина обнаруживается также РНК. Количественные отношения ДНК, белка и РНК составляют 1:1,3:0,2. Обнаружено, что длина индивидуальных линейных молекул ДНК может достигнуть сотен микрометров и даже сантиметров. Среди хромосом человека самая большая первая хромосома содержит ДНК с общей длиной до 7 см. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6 • 10^12 г.

В хромосомах существует множество мест независимой репликации ДНК — репликонов. ДНК эукариотических хромосом представляют собой линейные молекулы, состоящие из тандемно (друг за другом) расположенных репликонов разного размера. Средний размер репликона около 30 мкм. В составе генома человека должно встречаться более 50 000 репликонов, участков ДНК, которые синтезируются как независимые единицы. Синтез ДНК как на участках отдельной хромосомы, так и среди разных хромосом идет неодновременно, асинхронно. Так, например, в некоторых хромосомах человека (1, 3, 16) репликация наиболее интенсивно начинается на концах хромосом и заканчивается (при высокой интенсивности включения метки) в центромерном районе (см. ниже). Наиболее поздно репликация заканчивается в хромосомах или в их участках, находящихся в компактном, конденсированном состоянии. Таким примером может являться поздняя репликация генетически инактивированной Х-хромосомы у женщин, формирующей в клеточном ядре компактное тельце полового хроматина.

Белки хроматина составляют 60—70% от его сухой массы. К ним относятся так называемые гистоны и негистоновые белки. Негистоновые белки составляют 20% от количества гистонов. Гистоны — щелочные белки, обогащенные основными аминокислотами (главным образом лизином и аргинином). Очевидна структурная роль гистонов, которые не только обеспечивают специфическую укладку хромосомной ДНК, но и имеют значение в регуляции транскрипции. Гистоны расположены по длине молекулы ДНК не равномерно, а в виде блоков. В один такой блок входят 8 молекул гистонов, образуя так называемую нуклеосому. Размер нуклеосомы около 10 нм. При образовании нуклеосом происходит компактизация, сверхспирализация ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз. Сама же хромосомная фибрилла имеет вид нитки бус или четок, где каждая бусина — нуклеосома (см. рис. 17). Такие фибриллы толщиной 10 нм дополнительно продольно конденсируются и образуют основную элементарную фибриллу хроматина толщиной 25 нм.

Негистоновые белки интерфазных ядер образуют внутри ядра структурную сеть, которая носит название ядерный белковый матрикс, представляющий собой основу, определяющую морфологию и метаболизм ядра.

В ядрах, кроме хроматиновых участков и матрикса, встречаются перихроматиновые фибриллы, перихроматиновые и интерхроматиновые гранулы. Они содержат РНК и встречаются практически во всех активных ядрах, представляют собой информационные РНК, связанные с белками, — рибонуклеопротеиды (информосомы). Матрицами для синтеза этих РНК являются разные гены, разбросанные по деконденсированным участкам хромосомных (точнее, хроматиновых) фибрилл.

Читайте также:  Иммуноглобулин беременным бесплатно

Особый тип матричной ДНК, а именно ДНК для синтеза рибосомной РНК, собран обычно в нескольких компактных участках, входящих в состав ядрышек интерфазных ядер.

Ядрышко

Практически во всех живых клетках эукариотических организмов в ядре видно одно или несколько обычно округлой формы телец величиной 1—5 мкм, сильно преломляющих свет — это ядрышко, или нуклеола (nucleolus). К общим свойствам ядрышка относится способность хорошо окрашиваться различными красителями, особенно основными. Такая базофилия определяется тем, что ядрышки богаты РНК. Ядрышко — самая плотная структура ядра — является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Оно не является самостоятельной структурой или органеллой.

В настоящее время известно, что ядрышко — это место образования рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей уже в цитоплазме.

Образование ядрышек и их число связаны с активностью и числом определенных участков хромосом — ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек; количество ядрышек в клетках данного типа может изменяться за счет слияния ядрышек или за счет изменения числа хромосом с ядрышковыми организаторами. При исследовании фиксированных клеток вокруг ядрышка всегда выявляется зона конденсированного хроматина, часто отождествляемая с хроматином ядрышкового организатора. Этот околоядрышковый хроматин, по данным электронной микроскопии, представляет собой интегральную часть сложной структуры ядрышка. ДНК ядрышкового организатора представлена множественными (несколько сотен) копиями генов рРНК: на каждом из этих генов синтезируется высокомолекулярный предшественник РНК, который превращается в более короткие молекулы РНК, входящие в состав субъединиц рибосомы.

Схему участия ядрышек в синтезе цитоплазматических белков можно представить следующим образом: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком, здесь происходит сборка рибонуклеопротеидных частиц — субъединиц рибосом; субъединицы, выходя из ядрышка в цитоплазму, участвуют в процессе синтеза белка.

Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15—20 нм, толщина фибрилл — 6—8 нм.

Фибриллярный компонент может быть сосредоточен в виде центральной части ядрышка, а гранулярный — по периферии. Часто гранулярный компонент образует нитчатые структуры — нуклеолонемы толщиной около 0,2 мкм. Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы — созревающие субъединицы рибосом. В зоне фибрилл можно выявить участки ДНК ядрышковых организаторов.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, ядрышки превращаются в плотные фибриллярные тельца базофильной природы.

Действие многих веществ (актиномицин, митомицин, ряд канцерогенных углеводородов, циклогексимид, гидрооксимочевина и др.) вызывает в клетках падение интенсивности ряда синтезов и в первую очередь активности ядрышек. При этом возникают изменения в структуре ядрышек: их сжатие, обособление фибриллярных и гранулярных зон, потеря гранулярного компонента, распад всей структуры. Эти изменения отражают степень повреждения ядрышковых структур, связанных главным образом с подавлением синтеза рРНК.

Ядерная оболочка

Ядерная оболочка (nucleolemma) состоит из внешней ядерной мембраны (m. nuclearis externa) и внутренней мембраны оболочки (m. nuclearis interna), разделенных перинуклеарным пространством, или цистерной ядерной оболочки (cisterna nucleolemmae). Ядерная оболочка содержит ядерные поры (pori nucleares).

Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран. В общем виде ядерная оболочка может быть представлена как полый двухслойный мешок, отделяющий содержимое ядра от цитоплазмы.

Внешняя мембрана ядерной оболочки, непосредственно контактирующая с цитоплазмой клетки, имеет ряд структурных особенностей, позволяющих отнести ее к собственно мембранной системе эндоплазматической сети: на ней со стороны гиалоплазмы расположены многочисленные рибосомы, а сама внешняя ядерная мембрана может прямо переходить в мембраны эндоплазматической сети. Внутренняя мембрана связана с хромосомным материалом ядра.

Наиболее характерными структурами ядерной оболочки являются ядерные поры. Они образуются за счет слияния двух ядерных мембран. Формирующиеся при этом округлые сквозные отверстия поры (annulus pori) имеют диаметр около 80—90 нм. Эти отверстия в ядерной оболочке заполнены сложноорганизованными глобулярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур называют комплексом поры (complexus pori) (рис. 18). Такой сложный комплекс поры имеет октагональную симметрию. По границе округлого отверстия в ядерной оболочке располагается три ряда гранул по 8 в каждом: один ряд лежит со стороны ядра, другой — со стороны цитоплазмы, третий расположен между ними в центральной части поры. Размер гранул около 25 нм. От этих гранул отходят фибриллярные отростки. Фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать как бы перегородку, диафрагму поперек поры (diaphragma pori). Размеры пор у данной клетки обычно стабильны, так же как относительно стабилен размер ядерных пор клеток разных организмов.

Число ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра. Так, у эритробластов (клеток-предшественников ядерных эритроцитов) низших позвоночных животных во время интенсивного синтеза и накопления гемоглобина обнаруживается в ядре около 30 ядерных пор на 1 мкм2. После того как эти процессы заканчиваются, в ядрах зрелых клеток — эритроцитов прекращается синтез ДНК и РНК и количество пор снижается до 5 на 1 мкм2. В ядерных оболочках полностью зрелых сперматозоидов поры не обнаруживаются.

Из многочисленных свойств и функциональных нагрузок ядерной оболочки следует подчеркнуть ее роль как барьера, отделяющего содержимое ядра от цитоплазмы, ограничивающего свободный доступ в ядро крупных агрегатов биополимеров, регулирующего транспорт макромолекул между ядром и цитоплазмой. Одной из важных функций ядерной оболочки следует считать ее участие в создании внутриядерного порядка — в фиксации хромосомного материала в трехмерном пространстве ядра. В интерфазе часть хроматина структурно связана с внутренней ядерной мембраной. Описаны случаи примембранной локализации центромерных и теломерных участков интерфазных хромосом.

Ссылка на основную публикацию
Хрипота в голосе причины у взрослых
Достаточно часто к ЛОР-врачу обращаются взрослые пациенты с жалобой на осиплость или потерю голоса. Состояние, когда у взрослого появилась осиплость,...
Хондроксид максимум инструкция по применению цена
хондроксид максимум крем наружн. 8% 50г туба n1 545 . 00 руб Планета здоровья Планета здоровья Москва ХОНДРОКСИД МАКСИМУМ 8%...
Хондроксид при подагре
Коварное заболевание, которое разрушает не только суставы, но другие системы и органы организма, называют подагрой. Одним из основных проявлений болезни...
Хромосомы в интерфазном ядре
Интерфазная хромосома - это раскрученная двойная нить ДНК, в таком состоянии с нее считывается информация, необходимая для жизнедеятельности клетки. То...
Adblock detector